

Welcome to RankFM’s Documentation!

RankFM is a python implementation of the general Factorization Machines model class described in Rendle 2010 [https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf] adapted for collaborative filtering recommendation/ranking problems with implicit feedback user-item interaction data. It uses Bayesian Personalized Ranking (BPR) [https://arxiv.org/pdf/1205.2618.pdf] and a variant of Weighted Approximate-Rank Pairwise (WARP) [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.587.3946&rep=rep1&type=pdf] loss to learn model weights via Stochastic Gradient Descent (SGD). It can (optionally) incorporate individual training sample weights and/or user/item auxiliary features to augment the main interaction data for model training.

The core training/prediction/recommendation methods are written in Cython [https://cython.org/]. This makes it possible to scale to millions of users, items, and interactions. Designed for ease-of-use, RankFM accepts both pd.DataFrame and np.ndarray inputs. You do not have to convert your data to scipy.sparse matrices or re-map user/item identifiers to matrix indexes prior to use - RankFM internally maps all user/item identifiers to zero-based integer indexes, but always converts its outputs back to the original user/item identifiers from your data, which can be arbitrary (non-zero-based, non-consecutive) integers or even strings.

In addition to the familiar fit(), predict(), recommend() methods, RankFM includes additional utilities similiar_users() and similar_items() to find the most similar users/items to a given user/item based on latent factor space embeddings. A number of popular recommendation/ranking evaluation metric functions have been included in the separate evaluation module to streamline model tuning and validation.

Dependencies

	Python 3.6+

	numpy >= 1.15

	pandas >= 0.24

Installation

Prerequisites

To install RankFM’s C extensions you will need the GNU Compiler Collection (GCC) [https://gcc.gnu.org/]. Check to see whether you already have it installed:

gcc --version

If you don’t have it already you can easily install it using Homebrew [https://brew.sh/] on OSX or your default linux package manager:

OSX
brew install gcc

linux
sudo yum install gcc

ensure [gcc] has been installed correctly and is on the system PATH
gcc --version

Package Installation

You can install the latest published version from PyPI using pip:

pip install rankfm

Or alternatively install the current development build directly from GitHub:

pip install git+https://github.com/etlundquist/rankfm.git#egg=rankfm

Contents

	Home
	Dependencies

	Installation

	Quickstart

	RankFM Model

	Model Evaluation

Welcome to RankFM’s Documentation!

RankFM is a python implementation of the general Factorization Machines model class described in Rendle 2010 [https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf] adapted for collaborative filtering recommendation/ranking problems with implicit feedback user-item interaction data. It uses Bayesian Personalized Ranking (BPR) [https://arxiv.org/pdf/1205.2618.pdf] and a variant of Weighted Approximate-Rank Pairwise (WARP) [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.587.3946&rep=rep1&type=pdf] loss to learn model weights via Stochastic Gradient Descent (SGD). It can (optionally) incorporate individual training sample weights and/or user/item auxiliary features to augment the main interaction data for model training.

The core training/prediction/recommendation methods are written in Cython [https://cython.org/]. This makes it possible to scale to millions of users, items, and interactions. Designed for ease-of-use, RankFM accepts both pd.DataFrame and np.ndarray inputs. You do not have to convert your data to scipy.sparse matrices or re-map user/item identifiers to matrix indexes prior to use - RankFM internally maps all user/item identifiers to zero-based integer indexes, but always converts its outputs back to the original user/item identifiers from your data, which can be arbitrary (non-zero-based, non-consecutive) integers or even strings.

In addition to the familiar fit(), predict(), recommend() methods, RankFM includes additional utilities similiar_users() and similar_items() to find the most similar users/items to a given user/item based on latent factor space embeddings. A number of popular recommendation/ranking evaluation metric functions have been included in the separate evaluation module to streamline model tuning and validation.

Dependencies

	Python 3.6+

	numpy >= 1.15

	pandas >= 0.24

Installation

Prerequisites

To install RankFM’s C extensions you will need the GNU Compiler Collection (GCC) [https://gcc.gnu.org/]. Check to see whether you already have it installed:

gcc --version

If you don’t have it already you can easily install it using Homebrew [https://brew.sh/] on OSX or your default linux package manager:

OSX
brew install gcc

linux
sudo yum install gcc

ensure [gcc] has been installed correctly and is on the system PATH
gcc --version

Package Installation

You can install the latest published version from PyPI using pip:

pip install rankfm

Or alternatively install the current development build directly from GitHub:

pip install git+https://github.com/etlundquist/rankfm.git#egg=rankfm

Quickstart

Let’s work through a simple example of fitting a model, generating recommendations, evaluating performance, and assessing some item-item similarities. The data we’ll be using here may already be somewhat familiar: you know it, you love it, it’s the MovieLens 1M [https://grouplens.org/datasets/movielens/1m/]!

Let’s first look at the required shape of the interaction data:

	user_id

	item_id

	3

	233

	5

	377

	8

	610

It has just two columns: a user_id and an item_id (you can name these fields whatever you want or use a numpy array instead). Notice that there is no rating column - this library is for implicit feedback data (e.g. watches, page views, purchases, clicks) as opposed to explicit feedback data (e.g. 1-5 ratings, thumbs up/down). Implicit feedback is far more common in real-world recommendation contexts and doesn’t suffer from the missing-not-at-random problem [https://resources.bibblio.org/hubfs/share/2018-01-24-RecSysLDN-Ravelin.pdf] of pure explicit feedback approaches.

Now let’s import the library, initialize our model, and fit on the training data:

from rankfm.rankfm import RankFM
model = RankFM(factors=20, loss='warp', max_samples=20, learning_rate=0.1, learning_schedule='invscaling')
model.fit(interactions_train, epochs=20, verbose=True)

If you set verbose=True the model will print the current epoch number as well as the epoch’s log-likelihood during training. This can be useful to gauge both computational speed and training gains by epoch. If the log likelihood is not increasing then try upping the learning_rate or lowering the (alpha, beta) regularization strength terms. If the log likelihood is starting to bounce up and down try lowering the learning_rate or using learning_schedule=’invscaling’ to decrease the learning rate over time. If you run into overflow errors then decrease the feature and/or sample-weight magnitudes and try upping beta, especially if you have a small number of dense user-features and/or item-features. Selecting BPR loss will lead to faster training times, but WARP loss typically yields superior model performance.

Now let’s generate some user-item model scores from the validation data:

valid_scores = model.predict(interactions_valid, cold_start='nan')

this will produce an array of real-valued model scores generated using the Factorization Machines model equation. You can interpret it as a measure of the predicted utility of item (i) for user (u). The cold_start=’nan’ option can be used to set scores to np.nan for user/item pairs not found in the training data, or cold_start=’drop’ can be specified to drop those pairs so the results contain no missing values.

Now let’s generate our topN recommended movies for each user:

valid_recs = model.recommend(valid_users, n_items=10, filter_previous=True, cold_start='drop')

The input should be a pd.Series, np.ndarray or list of user_id values. You can use filter_previous=True to prevent generating recommendations that include any items observed by the user in the training data, which could be useful depending on your application context. The result will be a pd.DataFrame where user_id values will be the index and the rows will be each user’s top recommended items in descending order (best item is in column 0):

	user_id

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	3

	2396

	1265

	357

	34

	2858

	3175

	1

	2028

	17

	356

	5

	608

	1617

	1610

	3418

	590

	474

	858

	377

	924

	1036

	8

	589

	1036

	2571

	2028

	2000

	1220

	1197

	110

	780

	1954

Now let’s see how the model is performing wrt the included validation metrics evaluated on the hold-out data:

from rankfm.evaluation import hit_rate, reciprocal_rank, discounted_cumulative_gain, precision, recall

valid_hit_rate = hit_rate(model, interactions_valid, k=10)
valid_reciprocal_rank = reciprocal_rank(model, interactions_valid, k=10)
valid_dcg = discounted_cumulative_gain(model, interactions_valid, k=10)
valid_precision = precision(model, interactions_valid, k=10)
valid_recall = recall(model, interactions_valid, k=10)

hit_rate: 0.796
reciprocal_rank: 0.339
dcg: 0.734
precision: 0.159
recall: 0.077

That’s a Bingo! [https://www.youtube.com/watch?v=q5pESPQpXxE]

Now let’s find the most similar other movies for a few movies based on their embedding representations in latent factor space:

Terminator 2: Judgment Day (1991)
model.similar_items(589, n_items=10)

2571 Matrix, The (1999)
1527 Fifth Element, The (1997)
2916 Total Recall (1990)
3527 Predator (1987)
780 Independence Day (ID4) (1996)
1909 X-Files: Fight the Future, The (1998)
733 Rock, The (1996)
1376 Star Trek IV: The Voyage Home (1986)
480 Jurassic Park (1993)
1200 Aliens (1986)

I hope you like explosions… [https://www.youtube.com/watch?v=uENYMZNzg9w]

Being John Malkovich (1999)
model.similar_items(2997, n_items=10)

2599 Election (1999)
3174 Man on the Moon (1999)
2858 American Beauty (1999)
3317 Wonder Boys (2000)
223 Clerks (1994)
3897 Almost Famous (2000)
2395 Rushmore (1998)
2502 Office Space (1999)
2908 Boys Don't Cry (1999)
3481 High Fidelity (2000)

Let’s get weird… [https://www.youtube.com/watch?v=lIpev8JXJHQ&t=5s]

RankFM

	
class rankfm.rankfm.RankFM(factors=10, loss='bpr', max_samples=10, alpha=0.01, beta=0.1, sigma=0.1, learning_rate=0.1, learning_schedule='constant', learning_exponent=0.25)

	Factorization Machines for Ranking Problems with Implicit Feedback Data

	
__init__(factors=10, loss='bpr', max_samples=10, alpha=0.01, beta=0.1, sigma=0.1, learning_rate=0.1, learning_schedule='constant', learning_exponent=0.25)

	store hyperparameters and initialize internal model state

	Parameters

	
	factors – latent factor rank

	loss – optimization/loss function to use for training: [‘bpr’, ‘warp’]

	max_samples – maximum number of negative samples to draw for WARP loss

	alpha – L2 regularization penalty on [user, item] model weights

	beta – L2 regularization penalty on [user-feature, item-feature] model weights

	sigma – standard deviation to use for random initialization of factor weights

	learning_rate – initial learning rate for gradient step updates

	learning_schedule – schedule for adjusting learning rates by training epoch: [‘constant’, ‘invscaling’]

	learning_exponent – exponent applied to epoch number to adjust learning rate: scaling = 1 / pow(epoch + 1, learning_exponent)

	Returns

	None

	
fit(interactions, user_features=None, item_features=None, sample_weight=None, epochs=1, verbose=False)

	clear previous model state and learn new model weights using the input data

	Parameters

	
	interactions – dataframe of observed user/item interactions: [user_id, item_id]

	user_features – dataframe of user metadata features: [user_id, uf_1, … , uf_n]

	item_features – dataframe of item metadata features: [item_id, if_1, … , if_n]

	sample_weight – vector of importance weights for each observed interaction

	epochs – number of training epochs (full passes through observed interactions)

	verbose – whether to print epoch number and log-likelihood during training

	Returns

	self

	
fit_partial(interactions, user_features=None, item_features=None, sample_weight=None, epochs=1, verbose=False)

	learn or update model weights using the input data and resuming from the current model state

	Parameters

	
	interactions – dataframe of observed user/item interactions: [user_id, item_id]

	user_features – dataframe of user metadata features: [user_id, uf_1, … , uf_n]

	item_features – dataframe of item metadata features: [item_id, if_1, … , if_n]

	sample_weight – vector of importance weights for each observed interaction

	epochs – number of training epochs (full passes through observed interactions)

	verbose – whether to print epoch number and log-likelihood during training

	Returns

	self

	
predict(pairs, cold_start='nan')

	calculate the predicted pointwise utilities for all (user, item) pairs

	Parameters

	
	pairs – dataframe of [user, item] pairs to score

	cold_start – whether to generate missing values (‘nan’) or drop (‘drop’) user/item pairs not found in training data

	Returns

	np.array of real-valued model scores

	
recommend(users, n_items=10, filter_previous=False, cold_start='nan')

	calculate the topN items for each user

	Parameters

	
	users – iterable of user identifiers for which to generate recommendations

	n_items – number of recommended items to generate for each user

	filter_previous – remove observed training items from generated recommendations

	cold_start – whether to generate missing values (‘nan’) or drop (‘drop’) users not found in training data

	Returns

	pandas dataframe where the index values are user identifiers and the columns are recommended items

	
similar_items(item_id, n_items=10)

	find the most similar items wrt latent factor space representation

	Parameters

	
	item_id – item to search

	n_items – number of similar items to return

	Returns

	np.array of topN most similar items wrt latent factor representations

	
similar_users(user_id, n_users=10)

	find the most similar users wrt latent factor space representation

	Parameters

	
	user_id – user to search

	n_users – number of similar users to return

	Returns

	np.array of topN most similar users wrt latent factor representations

Model Evaluation

rankfm model tuning and evaluation functions

	
rankfm.evaluation.discounted_cumulative_gain(model, test_interactions, k=10, filter_previous=False)

	evaluate discounted cumulative gain wrt out-of-sample observed interactions

	Parameters

	
	model – trained RankFM model instance

	test_interactions – pandas dataframe of out-of-sample observed user/item interactions

	k – number of recommendations to generate for each user

	filter_previous – remove observed training items from generated recommendations

	Returns

	mean discounted cumulative gain wrt the test users

	
rankfm.evaluation.diversity(model, test_interactions, k=10, filter_previous=False)

	evaluate the diversity of the model recommendations

	Parameters

	
	model – trained RankFM model instance

	test_interactions – pandas dataframe of out-of-sample observed user/item interactions

	k – number of recommendations to generate for each user

	filter_previous – remove observed training items from generated recommendations

	Returns

	dataframe of cnt/pct of users recommended for each item

	
rankfm.evaluation.hit_rate(model, test_interactions, k=10, filter_previous=False)

	evaluate hit-rate (any match) wrt out-of-sample observed interactions

	Parameters

	
	model – trained RankFM model instance

	test_interactions – pandas dataframe of out-of-sample observed user/item interactions

	k – number of recommendations to generate for each user

	filter_previous – remove observed training items from generated recommendations

	Returns

	the hit rate or proportion of test users with any matching items

	
rankfm.evaluation.precision(model, test_interactions, k=10, filter_previous=False)

	evaluate precision wrt out-of-sample observed interactions

	Parameters

	
	model – trained RankFM model instance

	test_interactions – pandas dataframe of out-of-sample observed user/item interactions

	k – number of recommendations to generate for each user

	filter_previous – remove observed training items from generated recommendations

	Returns

	mean precision wrt the test users

	
rankfm.evaluation.recall(model, test_interactions, k=10, filter_previous=False)

	evaluate recall wrt out-of-sample observed interactions

	Parameters

	
	model – trained RankFM model instance

	test_interactions – pandas dataframe of out-of-sample observed user/item interactions

	k – number of recommendations to generate for each user

	filter_previous – remove observed training items from generated recommendations

	Returns

	mean recall wrt the test users

	
rankfm.evaluation.reciprocal_rank(model, test_interactions, k=10, filter_previous=False)

	evaluate reciprocal rank wrt out-of-sample observed interactions

	Parameters

	
	model – trained RankFM model instance

	test_interactions – pandas dataframe of out-of-sample observed user/item interactions

	k – number of recommendations to generate for each user

	filter_previous – remove observed training items from generated recommendations

	Returns

	mean reciprocal rank wrt the test users

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rankfm	

 	
 	
 rankfm.evaluation	

Index

 _
 | D
 | F
 | H
 | P
 | R
 | S

_

 	
 	__init__() (rankfm.rankfm.RankFM method)

D

 	
 	discounted_cumulative_gain() (in module rankfm.evaluation)

 	
 	diversity() (in module rankfm.evaluation)

F

 	
 	fit() (rankfm.rankfm.RankFM method)

 	
 	fit_partial() (rankfm.rankfm.RankFM method)

H

 	
 	hit_rate() (in module rankfm.evaluation)

P

 	
 	precision() (in module rankfm.evaluation)

 	
 	predict() (rankfm.rankfm.RankFM method)

R

 	
 	RankFM (class in rankfm.rankfm)

 	rankfm.evaluation (module)

 	
 	recall() (in module rankfm.evaluation)

 	reciprocal_rank() (in module rankfm.evaluation)

 	recommend() (rankfm.rankfm.RankFM method)

S

 	
 	similar_items() (rankfm.rankfm.RankFM method)

 	
 	similar_users() (rankfm.rankfm.RankFM method)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to RankFM’s Documentation!

 		
 Home

 		
 Dependencies

 		
 Installation

 		
 Prerequisites

 		
 Package Installation

 		
 Quickstart

 		
 RankFM Model

 		
 Model Evaluation

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

