
rankfm Documentation
Release 0.2.5

Eric Lundquist

Jul 19, 2020

Contents

1 Dependencies 3

2 Installation 5
2.1 Prerequisites . 5
2.2 Package Installation . 5

3 Contents 7
3.1 Welcome to RankFM’s Documentation! . 7
3.2 Quickstart . 8
3.3 RankFM . 10
3.4 Model Evaluation . 12

Python Module Index 15

Index 17

i

ii

rankfm Documentation, Release 0.2.5

RankFM is a python implementation of the general Factorization Machines model class described in Rendle 2010
adapted for collaborative filtering recommendation/ranking problems with implicit feedback user-item interaction data.
It uses Bayesian Personalized Ranking (BPR) and a variant of Weighted Approximate-Rank Pairwise (WARP) loss to
learn model weights via Stochastic Gradient Descent (SGD). It can (optionally) incorporate individual training sample
weights and/or user/item auxiliary features to augment the main interaction data for model training.

The core training/prediction/recommendation methods are written in Cython. This makes it possible to scale to mil-
lions of users, items, and interactions. Designed for ease-of-use, RankFM accepts both pd.DataFrame and np.ndarray
inputs. You do not have to convert your data to scipy.sparse matrices or re-map user/item identifiers to matrix indexes
prior to use - RankFM internally maps all user/item identifiers to zero-based integer indexes, but always converts
its outputs back to the original user/item identifiers from your data, which can be arbitrary (non-zero-based, non-
consecutive) integers or even strings.

In addition to the familiar fit(), predict(), recommend() methods, RankFM includes additional utilities similiar_users()
and similar_items() to find the most similar users/items to a given user/item based on latent factor space embeddings. A
number of popular recommendation/ranking evaluation metric functions have been included in the separate evaluation
module to streamline model tuning and validation.

Contents 1

https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
https://arxiv.org/pdf/1205.2618.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.587.3946&rep=rep1&type=pdf
https://cython.org/

rankfm Documentation, Release 0.2.5

2 Contents

CHAPTER 1

Dependencies

• Python 3.6+

• numpy >= 1.15

• pandas >= 0.24

3

rankfm Documentation, Release 0.2.5

4 Chapter 1. Dependencies

CHAPTER 2

Installation

2.1 Prerequisites

To install RankFM’s C extensions you will need the GNU Compiler Collection (GCC). Check to see whether you
already have it installed:

gcc --version

If you don’t have it already you can easily install it using Homebrew on OSX or your default linux package manager:

OSX
brew install gcc

linux
sudo yum install gcc

ensure [gcc] has been installed correctly and is on the system PATH
gcc --version

2.2 Package Installation

You can install the latest published version from PyPI using pip:

pip install rankfm

Or alternatively install the current development build directly from GitHub:

pip install git+https://github.com/etlundquist/rankfm.git#egg=rankfm

5

https://gcc.gnu.org/
https://brew.sh/

rankfm Documentation, Release 0.2.5

6 Chapter 2. Installation

CHAPTER 3

Contents

3.1 Welcome to RankFM’s Documentation!

RankFM is a python implementation of the general Factorization Machines model class described in Rendle 2010
adapted for collaborative filtering recommendation/ranking problems with implicit feedback user-item interaction data.
It uses Bayesian Personalized Ranking (BPR) and a variant of Weighted Approximate-Rank Pairwise (WARP) loss to
learn model weights via Stochastic Gradient Descent (SGD). It can (optionally) incorporate individual training sample
weights and/or user/item auxiliary features to augment the main interaction data for model training.

The core training/prediction/recommendation methods are written in Cython. This makes it possible to scale to mil-
lions of users, items, and interactions. Designed for ease-of-use, RankFM accepts both pd.DataFrame and np.ndarray
inputs. You do not have to convert your data to scipy.sparse matrices or re-map user/item identifiers to matrix indexes
prior to use - RankFM internally maps all user/item identifiers to zero-based integer indexes, but always converts
its outputs back to the original user/item identifiers from your data, which can be arbitrary (non-zero-based, non-
consecutive) integers or even strings.

In addition to the familiar fit(), predict(), recommend() methods, RankFM includes additional utilities similiar_users()
and similar_items() to find the most similar users/items to a given user/item based on latent factor space embeddings. A
number of popular recommendation/ranking evaluation metric functions have been included in the separate evaluation
module to streamline model tuning and validation.

3.1.1 Dependencies

• Python 3.6+

• numpy >= 1.15

• pandas >= 0.24

3.1.2 Installation

7

https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
https://arxiv.org/pdf/1205.2618.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.587.3946&rep=rep1&type=pdf
https://cython.org/

rankfm Documentation, Release 0.2.5

Prerequisites

To install RankFM’s C extensions you will need the GNU Compiler Collection (GCC). Check to see whether you
already have it installed:

gcc --version

If you don’t have it already you can easily install it using Homebrew on OSX or your default linux package manager:

OSX
brew install gcc

linux
sudo yum install gcc

ensure [gcc] has been installed correctly and is on the system PATH
gcc --version

Package Installation

You can install the latest published version from PyPI using pip:

pip install rankfm

Or alternatively install the current development build directly from GitHub:

pip install git+https://github.com/etlundquist/rankfm.git#egg=rankfm

3.2 Quickstart

Let’s work through a simple example of fitting a model, generating recommendations, evaluating performance, and
assessing some item-item similarities. The data we’ll be using here may already be somewhat familiar: you know it,
you love it, it’s the MovieLens 1M!

Let’s first look at the required shape of the interaction data:

user_id item_id
3 233
5 377
8 610

It has just two columns: a user_id and an item_id (you can name these fields whatever you want or use a numpy array
instead). Notice that there is no rating column - this library is for implicit feedback data (e.g. watches, page views,
purchases, clicks) as opposed to explicit feedback data (e.g. 1-5 ratings, thumbs up/down). Implicit feedback is far
more common in real-world recommendation contexts and doesn’t suffer from the missing-not-at-random problem of
pure explicit feedback approaches.

Now let’s import the library, initialize our model, and fit on the training data:

from rankfm.rankfm import RankFM
model = RankFM(factors=20, loss='warp', max_samples=20, learning_rate=0.1, learning_
→˓schedule='invscaling')
model.fit(interactions_train, epochs=20, verbose=True)

8 Chapter 3. Contents

https://gcc.gnu.org/
https://brew.sh/
https://grouplens.org/datasets/movielens/1m/
https://resources.bibblio.org/hubfs/share/2018-01-24-RecSysLDN-Ravelin.pdf

rankfm Documentation, Release 0.2.5

If you set verbose=True the model will print the current epoch number as well as the epoch’s log-likelihood during
training. This can be useful to gauge both computational speed and training gains by epoch. If the log likelihood is
not increasing then try upping the learning_rate or lowering the (alpha, beta) regularization strength terms. If the log
likelihood is starting to bounce up and down try lowering the learning_rate or using learning_schedule=’invscaling’
to decrease the learning rate over time. If you run into overflow errors then decrease the feature and/or sample-weight
magnitudes and try upping beta, especially if you have a small number of dense user-features and/or item-features.
Selecting BPR loss will lead to faster training times, but WARP loss typically yields superior model performance.

Now let’s generate some user-item model scores from the validation data:

valid_scores = model.predict(interactions_valid, cold_start='nan')

this will produce an array of real-valued model scores generated using the Factorization Machines model equation.
You can interpret it as a measure of the predicted utility of item (i) for user (u). The cold_start=’nan’ option can be
used to set scores to np.nan for user/item pairs not found in the training data, or cold_start=’drop’ can be specified to
drop those pairs so the results contain no missing values.

Now let’s generate our topN recommended movies for each user:

valid_recs = model.recommend(valid_users, n_items=10, filter_previous=True, cold_
→˓start='drop')

The input should be a pd.Series, np.ndarray or list of user_id values. You can use filter_previous=True to prevent
generating recommendations that include any items observed by the user in the training data, which could be useful
depending on your application context. The result will be a pd.DataFrame where user_id values will be the index and
the rows will be each user’s top recommended items in descending order (best item is in column 0):

user_id 0 1 2 3 4 5 6 7 8 9
3 2396 1265 357 34 2858 3175 1 2028 17 356
5 608 1617 1610 3418 590 474 858 377 924 1036
8 589 1036 2571 2028 2000 1220 1197 110 780 1954

Now let’s see how the model is performing wrt the included validation metrics evaluated on the hold-out data:

from rankfm.evaluation import hit_rate, reciprocal_rank, discounted_cumulative_gain,
→˓precision, recall

valid_hit_rate = hit_rate(model, interactions_valid, k=10)
valid_reciprocal_rank = reciprocal_rank(model, interactions_valid, k=10)
valid_dcg = discounted_cumulative_gain(model, interactions_valid, k=10)
valid_precision = precision(model, interactions_valid, k=10)
valid_recall = recall(model, interactions_valid, k=10)

hit_rate: 0.796
reciprocal_rank: 0.339
dcg: 0.734
precision: 0.159
recall: 0.077

That’s a Bingo!

Now let’s find the most similar other movies for a few movies based on their embedding representations in latent factor
space:

Terminator 2: Judgment Day (1991)
model.similar_items(589, n_items=10)

3.2. Quickstart 9

https://www.youtube.com/watch?v=q5pESPQpXxE

rankfm Documentation, Release 0.2.5

2571 Matrix, The (1999)
1527 Fifth Element, The (1997)
2916 Total Recall (1990)
3527 Predator (1987)
780 Independence Day (ID4) (1996)
1909 X-Files: Fight the Future, The (1998)
733 Rock, The (1996)
1376 Star Trek IV: The Voyage Home (1986)
480 Jurassic Park (1993)
1200 Aliens (1986)

I hope you like explosions. . .

Being John Malkovich (1999)
model.similar_items(2997, n_items=10)

2599 Election (1999)
3174 Man on the Moon (1999)
2858 American Beauty (1999)
3317 Wonder Boys (2000)
223 Clerks (1994)
3897 Almost Famous (2000)
2395 Rushmore (1998)
2502 Office Space (1999)
2908 Boys Don't Cry (1999)
3481 High Fidelity (2000)

Let’s get weird. . .

3.3 RankFM

class rankfm.rankfm.RankFM(factors=10, loss=’bpr’, max_samples=10, alpha=0.01, beta=0.1,
sigma=0.1, learning_rate=0.1, learning_schedule=’constant’, learn-
ing_exponent=0.25)

Factorization Machines for Ranking Problems with Implicit Feedback Data

__init__(factors=10, loss=’bpr’, max_samples=10, alpha=0.01, beta=0.1, sigma=0.1, learn-
ing_rate=0.1, learning_schedule=’constant’, learning_exponent=0.25)

store hyperparameters and initialize internal model state

Parameters

• factors – latent factor rank

• loss – optimization/loss function to use for training: [‘bpr’, ‘warp’]

• max_samples – maximum number of negative samples to draw for WARP loss

• alpha – L2 regularization penalty on [user, item] model weights

• beta – L2 regularization penalty on [user-feature, item-feature] model weights

• sigma – standard deviation to use for random initialization of factor weights

• learning_rate – initial learning rate for gradient step updates

• learning_schedule – schedule for adjusting learning rates by training epoch: [‘con-
stant’, ‘invscaling’]

10 Chapter 3. Contents

https://www.youtube.com/watch?v=uENYMZNzg9w
https://www.youtube.com/watch?v=lIpev8JXJHQ&t=5s

rankfm Documentation, Release 0.2.5

• learning_exponent – exponent applied to epoch number to adjust learning rate: scal-
ing = 1 / pow(epoch + 1, learning_exponent)

Returns None

fit(interactions, user_features=None, item_features=None, sample_weight=None, epochs=1, ver-
bose=False)
clear previous model state and learn new model weights using the input data

Parameters

• interactions – dataframe of observed user/item interactions: [user_id, item_id]

• user_features – dataframe of user metadata features: [user_id, uf_1, . . . , uf_n]

• item_features – dataframe of item metadata features: [item_id, if_1, . . . , if_n]

• sample_weight – vector of importance weights for each observed interaction

• epochs – number of training epochs (full passes through observed interactions)

• verbose – whether to print epoch number and log-likelihood during training

Returns self

fit_partial(interactions, user_features=None, item_features=None, sample_weight=None,
epochs=1, verbose=False)

learn or update model weights using the input data and resuming from the current model state

Parameters

• interactions – dataframe of observed user/item interactions: [user_id, item_id]

• user_features – dataframe of user metadata features: [user_id, uf_1, . . . , uf_n]

• item_features – dataframe of item metadata features: [item_id, if_1, . . . , if_n]

• sample_weight – vector of importance weights for each observed interaction

• epochs – number of training epochs (full passes through observed interactions)

• verbose – whether to print epoch number and log-likelihood during training

Returns self

predict(pairs, cold_start=’nan’)
calculate the predicted pointwise utilities for all (user, item) pairs

Parameters

• pairs – dataframe of [user, item] pairs to score

• cold_start – whether to generate missing values (‘nan’) or drop (‘drop’) user/item
pairs not found in training data

Returns np.array of real-valued model scores

recommend(users, n_items=10, filter_previous=False, cold_start=’nan’)
calculate the topN items for each user

Parameters

• users – iterable of user identifiers for which to generate recommendations

• n_items – number of recommended items to generate for each user

• filter_previous – remove observed training items from generated recommendations

3.3. RankFM 11

rankfm Documentation, Release 0.2.5

• cold_start – whether to generate missing values (‘nan’) or drop (‘drop’) users not
found in training data

Returns pandas dataframe where the index values are user identifiers and the columns are rec-
ommended items

similar_items(item_id, n_items=10)
find the most similar items wrt latent factor space representation

Parameters

• item_id – item to search

• n_items – number of similar items to return

Returns np.array of topN most similar items wrt latent factor representations

similar_users(user_id, n_users=10)
find the most similar users wrt latent factor space representation

Parameters

• user_id – user to search

• n_users – number of similar users to return

Returns np.array of topN most similar users wrt latent factor representations

3.4 Model Evaluation

rankfm model tuning and evaluation functions

rankfm.evaluation.discounted_cumulative_gain(model, test_interactions, k=10, fil-
ter_previous=False)

evaluate discounted cumulative gain wrt out-of-sample observed interactions

Parameters

• model – trained RankFM model instance

• test_interactions – pandas dataframe of out-of-sample observed user/item interac-
tions

• k – number of recommendations to generate for each user

• filter_previous – remove observed training items from generated recommendations

Returns mean discounted cumulative gain wrt the test users

rankfm.evaluation.diversity(model, test_interactions, k=10, filter_previous=False)
evaluate the diversity of the model recommendations

Parameters

• model – trained RankFM model instance

• test_interactions – pandas dataframe of out-of-sample observed user/item interac-
tions

• k – number of recommendations to generate for each user

• filter_previous – remove observed training items from generated recommendations

Returns dataframe of cnt/pct of users recommended for each item

12 Chapter 3. Contents

rankfm Documentation, Release 0.2.5

rankfm.evaluation.hit_rate(model, test_interactions, k=10, filter_previous=False)
evaluate hit-rate (any match) wrt out-of-sample observed interactions

Parameters

• model – trained RankFM model instance

• test_interactions – pandas dataframe of out-of-sample observed user/item interac-
tions

• k – number of recommendations to generate for each user

• filter_previous – remove observed training items from generated recommendations

Returns the hit rate or proportion of test users with any matching items

rankfm.evaluation.precision(model, test_interactions, k=10, filter_previous=False)
evaluate precision wrt out-of-sample observed interactions

Parameters

• model – trained RankFM model instance

• test_interactions – pandas dataframe of out-of-sample observed user/item interac-
tions

• k – number of recommendations to generate for each user

• filter_previous – remove observed training items from generated recommendations

Returns mean precision wrt the test users

rankfm.evaluation.recall(model, test_interactions, k=10, filter_previous=False)
evaluate recall wrt out-of-sample observed interactions

Parameters

• model – trained RankFM model instance

• test_interactions – pandas dataframe of out-of-sample observed user/item interac-
tions

• k – number of recommendations to generate for each user

• filter_previous – remove observed training items from generated recommendations

Returns mean recall wrt the test users

rankfm.evaluation.reciprocal_rank(model, test_interactions, k=10, filter_previous=False)
evaluate reciprocal rank wrt out-of-sample observed interactions

Parameters

• model – trained RankFM model instance

• test_interactions – pandas dataframe of out-of-sample observed user/item interac-
tions

• k – number of recommendations to generate for each user

• filter_previous – remove observed training items from generated recommendations

Returns mean reciprocal rank wrt the test users

3.4. Model Evaluation 13

rankfm Documentation, Release 0.2.5

14 Chapter 3. Contents

Python Module Index

r
rankfm.evaluation, 12

15

rankfm Documentation, Release 0.2.5

16 Python Module Index

Index

Symbols
__init__() (rankfm.rankfm.RankFM method), 10

D
discounted_cumulative_gain() (in module

rankfm.evaluation), 12
diversity() (in module rankfm.evaluation), 12

F
fit() (rankfm.rankfm.RankFM method), 11
fit_partial() (rankfm.rankfm.RankFM method), 11

H
hit_rate() (in module rankfm.evaluation), 12

P
precision() (in module rankfm.evaluation), 13
predict() (rankfm.rankfm.RankFM method), 11

R
RankFM (class in rankfm.rankfm), 10
rankfm.evaluation (module), 12
recall() (in module rankfm.evaluation), 13
reciprocal_rank() (in module rankfm.evaluation),

13
recommend() (rankfm.rankfm.RankFM method), 11

S
similar_items() (rankfm.rankfm.RankFM method),

12
similar_users() (rankfm.rankfm.RankFM method),

12

17

	Dependencies
	Installation
	Prerequisites
	Package Installation

	Contents
	Welcome to RankFM’s Documentation!
	Quickstart
	RankFM
	Model Evaluation

	Python Module Index
	Index

